Modelling Submesoscale Dynamics: A New Parameterization for Symmetric Instability

Scott Bachman1, Leif N Thomas2, John Ryan Taylor1 and Baylor Fox-Kemper3, (1)University of Cambridge, Cambridge, United Kingdom, (2)Stanford University, Stanford, CA, United States, (3)Brown University, Providence, RI, United States
Abstract:
Next-generation ocean models are expected to routinely resolve dynamics at 1/4 degree or smaller, offering new challenges in modelling subgridscale physics. These models are entering a regime where the unresolved turbulence is less constrained by planetary rotation, requiring a paradigm shift in the way modellers construct turbulence closures. Of particular importance is the representation of submesoscale turbulence, occupying O(1-10) km scales, which plays a leading role in setting the stratification of the surface mixed layer and mediating air-sea fluxes. This talk will introduce the submesoscale parameterization problem by presenting a few extant parameterizations, and will focus on a special type of fluid instability for which no parameterization has previously been developed: symmetric instability (SI). The theory and dynamics of SI will be discussed, from which a new parameterization will be proposed. This parameterization is dependent on external forcing by either surface buoyancy loss or down-front winds, which reduce potential vorticity (PV) and lead to conditions favorable for SI. Preliminary testing of the parameterization using a set of idealized models shows that the induced vertical fluxes of passive tracers and momentum are consistent with those from SI-resolving Large Eddy Simulations.