A Drift Model to Predict Where Marine Mammals Struck by Tidal Stream Turbines Might Strand
A Drift Model to Predict Where Marine Mammals Struck by Tidal Stream Turbines Might Strand
Abstract:
Tidal stream turbines will be a novel technology in Scottish waters, the risk of blade collision with marine mammals is an unknown environmental risk. In order to monitor this risk when scaling to commercial size arrays it is proposed to walk beaches for stranded carcases; where to conduct this monitoring for a given site can be informed by the use of an appropriately constructed drift model.
A drift model has been created and investigated for case studies on the West Coast of Scotland. The model uses forcing fields from existing and specially set up current, wind and wave models. It considers the effect of carcase buoyancy, the combination of forcing fields and the coastline dynamics as well as the problems that arise from numerical approximations and uncertainty. Novel fieldwork using carcase like drifters has been undertaken to parametrise and inform the model, and to further understand the effect of wave transport on carcase sized objects, a feature not previously considered in drift work.
The model is found to have sensitivity to the wind and wave parametrisations of carcases, as well as specification of stranding schemes. It shows heterogeneous stranding patterns which are site specific and allow a hierarchy of areas to be specified for monitoring. The uncertainties in this approach and the potential utility and drawbacks of using this sort of tool in environmental monitoring and mitigation are also discussed.