An Alkaline Phosphatase Paradox in a Shelf Sea

Clare Elizabeth Davis, University of Liverpool, Earth, Oceans and Ecosystem Sciences, Liverpool, United Kingdom and Claire Mahaffey, University of Liverpool, Earth, Ocean and Ecological Sciences, Liverpool, United Kingdom
Abstract:
Alkaline phosphatase (AP) is an ubiquitous hydrolytic phosphoenzyme that hydrolyses phosphomonester bonds. In the open ocean, the generally accepted paradigm is that when phosphate concentrations are sufficiently depleted (less than 50 nM), AP is produced by organisms to enable utilisation of dissolved organic phosphorus to meet the phosphorus demands of biological processes such as growth and carbon fixation. At higher phosphate concentrations (greater than 100 nM), AP is repressed implying that the excess product competes for active sites at enzyme surfaces. However, our ongoing work on phosphorus cycling in the Celtic Sea, a temperate shelf sea, has challenged this paradigm. We find elevated rates of AP below the thermocline where phosphate concentrations are greater than 700 nM, and a significant correlation between AP and total dissolved phosphorus. Using enzyme labelled fluorescence (ELF) and particle concentrate bioassays, we show that the AP is associated with large detrital and sinking particulate matter, suggesting that rather than AP being induced by the lack of phosphate, it plays an important role in organic matter cycling in this nitrogen limited environment. At the shelf edge, AP was found to be associated with diatoms, which have been found in culture studies to express AP under silica limitation.

Our study highlights the need to consider the environmental conditions under which AP is induced or repressed and presents an opportunity to use AP as an indicator of organic phosphorus recycling in high phosphate environments.