Origin, transport and burial of organic matter in the Whittard Canyon, North East Atlantic

Catherine Elizabeth Kershaw, Liverpool John Moores, Natural Sciences and Psychology, Liverpool, United Kingdom
Abstract:
Submarine canyons, large and complex topographic features commonly found at all continental margins, are usually considered efficient conduits of material to the deep sea that can also harbour varied and well developed ecosystems. Recent work from canyons of the Portuguese margin have revealed a highly heterogeneous environment home to diverse habitats, highlighting the significance of submarine canyons and the need for a more comprehensive understanding of the processes within them. Submarine environments are influenced by the variability of the oceanographic and biogeochemical regimes and the interaction with complex topography. The purpose of this research is to examine the provenance, transportation, burial potential and ecological function of sedimentary organic matter at targeted sites of the Whittard submarine canyon (Celtic Sea, North East Atlantic), one of the largest (~100 km across, down to 4500 m depth) most complex topographic features in the North Western European Margin, and home to an array of diverse benthic ecosystems. Sediment cores down to ~50 cm were collected during three surveys in 2013, 2014 and 2015 at various depths across different channels and sedimentological and biogeochemical analyses have begun. Preliminary results have provided a glimpse of the distinct energy regime of the different canyon channels and differing carbon concentrations, emphasizing the complexity of the system. The project aims to elucidate the significance of the Whittard system in marine biogeochemical cycling and deep-sea ecosystem functioning, through further mineralogical and chemical characterization.