A Molecular MST Approach to Investigate Fecal Indicator Bacteria in Bioaerosols, Bathing Water, Seaweed Wrack, and Sand at Recreational Beaches
A Molecular MST Approach to Investigate Fecal Indicator Bacteria in Bioaerosols, Bathing Water, Seaweed Wrack, and Sand at Recreational Beaches
Abstract:
Despite numerous cases of beach bacteria affecting millions of people worldwide, the persistence of the bacteria populations in coastal areas is still not well understood. The purpose of this study was to test the levels of persistence of Fecal Indicating Bacteria (FIB) of enterococci, Escherichia coli, and Human-source Bacteroidales, within the intertidal “swash zone” and the deeper waist zone in which people commonly bathe and play. In addition, the study sought to determine if these bacterial contaminants may also be found in aerosols at the beach. Measuring solar insolation in relation to bacterial persistence in seaweed wrack was used to determine if sunlight plays a role in modifying concentrations of FIB at the beach. Light intensity measured by a solar photometer and air quality measured by aerosol plate counts and qPCR Microbial Source Tracking (MST) was compared to varying locations where the beach samples were collected. Results from water samples demonstrate that bacteria measured using plate counts and qPCR were indeed higher within the swash zone than in the waist zone. This is in contrast with the way that the EPA currently measures and determines the public safety of beach waters. They commonly measure the waist zone, but disregard the swash zone. Results from beach bio-aerosol samples showed a wide variety of fungi and bacteria in the beach air, and qPCR MST analysis of these bio-aerosols showed the presence of FIBs such as enterococci on several of the aerosol collection plates. This emphasizes the need to collect samples from the entire beach instead of just measuring at an isolated area, and that exposure to microbial contaminants may include bathing water, beach sand, seaweed wrack, and bio-aerosols. Thus, the data reveals a potential way to identify harmful levels of bacteria and dangerous levels of poor air quality at recreational beaches. These results expound the need for broader assessment of potential beach contamination, not only the swimming water, but also the beach air, shoreline, and also varying depths of water, which can be extremely beneficial to reduce people’s risk from microbial contamination exposure.