Coral-based estimates of tropical Pacific climate during the Little Ice Age: Intercolony variability and the need for replication
Coral-based estimates of tropical Pacific climate during the Little Ice Age: Intercolony variability and the need for replication
Abstract:
Massive surface corals offer continuous, high-resolution records of tropical climate variability, but reconstructing climate beyond the last century requires combining records from many different coral colonies [e.g. Cobb et al., 2003]. When combining coral records to build a reconstruction, however, one must grapple with the fact that corals growing on the same reef can yield Sr/Ca and δ18O records with significantly different mean values. These intercolony offsets equate to uncertainties of 1-3˚C when converted to SST [e.g. Felis et al., 2003; DeLong et al., 2011], significantly larger than the magnitude of decadal- to centennial-scale tropical climate variability during the last millennium [Emile-Geay et al., 2013]. Using a large suite of modern coral cores from Palmyra Atoll (6°N, 162°W), we quantify intercolony variability in Sr/Ca and δ18O records with respect to Sr/Ca-SST slopes and mean offsets. We document intercolony Sr/Ca offsets of ±0.09mmol/mol (1σ) or ~1˚C, and δ18O offsets of ±0.04‰ or ~0.2˚C. Sr/Ca-SST calibrations from six cores differ by ±5%, yielding temperatures ranging 26˚C to 29˚C when applied to a given coral Sr/Ca value. While individual corals are associated with large uncertainties, a composite of six modern cores offers a much reduced error bar of ±0.6˚C (1s). Applying these lessons to paired Sr/Ca and δ18O records from 3 Palmyra fossil corals from the 17th century, we find that central tropical Pacific (CTP) SST during the Little Ice Age (LIA) was 1.7±0.9˚C cooler than the 20th century. Seawater δ18O estimates derived from these fossil corals suggest drier conditions at Palmyra, consistent with lake sediment records from the Line Islands [Sachs et al., 2009].
References:
Cobb, K. M., et al. (2003) Nature. 10.1038/nature01779
DeLong, K. L., et al. (2011) Palaeogeo Palaeoclim Palaeoeco. 10.1016/J.Palaeo.2011.05.005
Emile-Geay, J., et al. (2013) Journal of Climate. 10.1175/JCLI-D-11-00511.1
Felis, T., et al. (2003) Coral Reefs. 10.1007/s00338-003-0324-3
Sachs, J. P., et al. (2009) Nature Geoscience. 10.1038/ngeo554