Indirect Effects and Potential Cumulative Impacts of Dredging in an Urbanized Estuary

Christopher K Sommerfield1, Julie Chen2, David K Ralston2 and W Rockwell Geyer2, (1)University of Delaware, Lewes, DE, United States, (2)Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering, Woods Hole, MA, United States
Abstract:
For over two centuries, the Delaware River and Bay estuary has supported one of the most economically important ports in the United States. To accommodate ships of ever-increasing size, the 165-km axial shipping channel has been deepened to over twice the natural depth of the estuary. While it is known that the channel has modified tides and sedimentation patterns in the estuary, unknown are the impacts on the ecosystem as a whole. A concern is the influence of channelization on sediment movement to the tidal wetland coast, which is eroding at rates on the order of meters per year. Tidal wetlands frame the entire estuary and provide vital ecosystem services ranging from recreation to carbon sequestration.

To identify shifts in baseline conditions, we are performing a retrospective analysis of estuarine dynamics using historical bathymetry, numerical modeling, and observational studies. The period of interest extends from 1848 (50 years prior to channel construction) to present. During this period the channel was progressively deepened from its natural depth of 5.5 m to the current depth of 14 m. Preliminary modeling results support independent evidence that the salt intrusion and zone of rapid sediment deposition migrated several 10s of kilometers up-estuary as an indirect effect of deepening. Ironically, the locus of intense deposition now falls squarely within the Wilmington-Philadelphia port complex; river sediment that initially settles in this area is removed by maintenance dredging before it can disperse seaward. Sediment budgetary analysis indicates that the mass of sediment dredged from the upper estuary on average exceeds the mass of the new sediment supplied from the drainage basin. Hence, a probable cumulative impact of dredging is a reduction in sediment delivery to the lower estuary and fringing wetlands. Connections among the shipping channel, wave-tide interactions, and marsh edge erosion are a topic of ongoing modeling and observational research.