Statistical Evaluation of VIIRS Ocean Color Products

Karlis Mikelsons1,2, Menghua Wang1 and Lide Jiang1,3, (1)NOAA/NESDIS/STAR, College Park, MD, United States, (2)GST, Inc, Greenbelt, MD, United States, (3)Colorado State University Fort Collins, Cooperative Institute for Atmospheric Research, Fort Collins, MD, United States
Evaluation and validation of satellite-derived ocean color products is a complicated task, which often relies on precise in-situ measurements for satellite data quality assessment. However, in-situ measurements are only available in comparatively few locations, expensive, and not for all times. In the open ocean, the variability in spatial and temporal scales is longer, and the water conditions are generally more stable. We use this fact to perform extensive statistical evaluations of consistency for ocean color retrievals based on comparison of retrieved data at different times, and corresponding to various retrieval parameters. We have used the NOAA Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system for ocean color product data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS). We show the results for statistical dependence of normalized water-leaving radiance spectra with respect to various parameters of retrieval geometry, such as solar- and sensor-zenith angles, as well as physical variables, such as wind speed, air pressure, ozone amount, water vapor, etc. In most cases, the results show consistent retrievals within the relevant range of retrieval parameters, showing a good performance with the MSL12 in the open ocean. The results also yield the upper bounds of solar- and sensor-zenith angles for reliable ocean color retrievals, and also show a slight increase of VIIRS-derived normalized water-leaving radiances with wind speed and water vapor concentration.