Historic Shipwrecks as Ecosystem Monitoring Platforms in the Wake of Deepwater Horizon? Results of the Gulf of Mexico Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology (GOM-SCHEMA) Project

Melanie Damour1, Leila J Hamdan2, Jennifer L Salerno2, Christine McGown2, Caitlin Anne Blackwell3, Robert Church4, Daniel Warren4, Christopher E. Horrell5, Brian Jordan6 and James Moore6, (1)Bureau of Ocean Energy Management New Orleans, New Orleans, LA, United States, (2)George Mason University Fairfax, Fairfax, VA, United States, (3)George Mason University, Environmental Science and Policy, Fairfax, VA, United States, (4)C&C Technologies, Inc., (5)Bureau of Safety and Environmental Enforcement, New Orleans, LA, United States, (6)Bureau of Ocean Energy Management, Sterling, VA
Abstract:
Historic shipwrecks and other archaeological sites are protected by a well-established body of historic preservation laws intended to preserve these sensitive, non-renewable resources. While the cultural, historical, and archaeological value of historic shipwrecks is unequivocal, their function and value as ecosystem monitoring platforms following a major environmental disaster is becoming apparent. Shipwrecks have been found in previous studies to serve as artificial reefs and hotspots of biodiversity, essentially providing the basis for an intact ecosystem. This is especially true in the deepwater marine environment where natural hard-bottom is sparse. Micro- and macro-infaunal diversity on shipwrecks and their sensitivity to environmental change demonstrates the suitability of these platforms for monitoring ecosystem impact and recovery. After the 2010 Deepwater Horizon oil spill, the Bureau of Ocean Energy Management (BOEM) and partners initiated a multidisciplinary study to examine spill effects on shipwrecks and their associated microbial communities. To assess these impacts and to perform comparative analyses, the team collected microbiological, geochemical, and archaeological data at wooden- and metal-hulled shipwrecks within and outside of the subsurface spill-impacted area. Microbial community biodiversity informs us of micro-scale changes while 3D laser and sonar data reveal macro-scale changes. A multidisciplinary approach informs us of the roles microorganisms have in shipwreck degradation and corrosion as well as their response to ecosystem impacts. Results of the study identified multiple lines of evidence that sites were impacted by exposure to spill-related contaminants. Future multidisciplinary studies at these sites, as part of a long-term monitoring program, should inform on ecosystem recovery.