Propagation of vent CO2 in a subtropical shallow-water ecosystem assessed by stable carbon isotopes

ABSTRACT WITHDRAWN

Abstract:
Carbon cycle of the ocean plays an important role in the global change associated with the emission of CO2. Anthropogenic CO2 dissolves in seawater, changes carbon chemistry of the ocean, and affects marine life in different and complicated ways. In this study, we investigated stable carbon isotope systematics of a shallow-water hydrothermal field near the Kueishantao Islet off NE Taiwan, which has vent gas composition dominated by CO2 and world record breaking low pH hydrothermal fluids. By studying this natural laboratory of ocean acidification, we aim at clarifying to which extent the high dosage of CO2 propagates in the subtropical shallow-water ecosystem, and how it affects the carbon cycle. Samples of seawater and suspended particles were collected from stations of two nearshore-offshore transects, one with hydrothermal vents at the nearshore end (Transect M, 1230 m long) and the other serving as the baseline (Transect B, 1560 m long). Surface seawater of Transect M showed increasing pH in the offshore direction, from 5.8 at the vent mouths to 7.6 at the most distant station. In contrast, pH of surface water decreased seaward from 8.0 to 7.8 in Transect B. The δ13C values of the vent CO2 averaged −6.4‰, consistent with the range attributed to mantle CO2. Seawater DIC δ13C values of Transect M were 13C-depleted (as negative as −2.5‰) at the vent mouths, and became increasingly 13C-enriched till 0.7‰ at the most distant station. This pattern is in clear contrast to that of Transect B, the DIC δ13C values of which decreased from 0.7 to 0.6 ‰ in the offshore direction. We concluded that the vent CO2 has propagated in the surface ocean at least >700 m away from the hydrothermal field. Our next step is to explore how the vent CO2 affects the stable carbon isotopes of particulate organic matter, and to assess the effect of vent CO2 using quantitative approaches.