Physical-biogeochemical Interactions in Northwestern Mediterranean, using the Glider "Sea Explorer" fitted with a Newly Developed Fluorescence Sensor, the MiniFluo-UV.

Madeleine Goutx1, Florent Besson2, Nagib Bhairy1, Chloé Germain1, Catherine Guigue3, Grégory Wassouf3, Laurent Beguery2 and Marc Tedetti1, (1)Mediterranean Institute of Oceanology (MIO), Environmental Chemistry Team, Aix-Marseille Université, CNRS/INSU UM 110, Marseille, France, (2)ALSEAMAR, 9 Europarc Sainte Victoire, Meyreuil, France, (3)Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France, France
Abstract:
From July 2014 to February 2015, we deployed the SeaExplorer glider (ALSEAMAR Company, Meyreuil, France) fitted with the 2 optical pathways tryptophan-like (TRY-) and phenanthrenes-like (PHE-) MiniFluo-UV fluorescence sensor (french CNRS patent) and other sensors for hydrological and biogeochemical parameters (T, S, Chla, turbidity, humic-like) along the shelf off Marseille and the northern Mediterranean coast. Our goal was to characterize the distributions of dissolved organic matter (DOM) to assess its spatial variability in relation with biological and hydrological features, and human pressure.

Interestingly, TRY-like and PHE-like concentrations displayed independent behavior along the bay of Marseille transects whereas they co-varied with physical and other biogeochemical descriptors near the mouth of the Rhone River. Around this highly anthropogenised area, lower salinities and higher concentrations in Chla, TRY- and PHE-like materials were observed. After rainy weather, waters of low salinity and of higher Chla, TRY- and PHE-like concentrations extended further southwards. Tryptophan-like concentrations showed a significant correlation with salinity and Chla indicating a biological source of DOM related to the Rhône inputs. Phenanthrene has different atypical profiles of other parameters showing patches of high concentrations at the surface throughout the transect (shipping) and at depth (sediment resuspension). The distribution of humic acid was controlled by the photo-bleaching. Southeast of the bay, intrusion of low temperature high salinity water in the surface layer was the likely feature of upwelled waters from subjacent layers. This study highlights the interest of coupling the outstanding maneuverability of SeaExplorer for exploring shallow waters and highly dynamic river mouth to the MiniFluo-UV sensor for analyzing the fluorescence properties of sea water.

This work received fundings from the European Union’s FP7 program within the framework of “NeXOS” project, for research, technological development and demonstration under grant agreement No 614102, in collaboration with ALSEAMAR Company.