Long-term simulation of vertical transport process and its impact on bottom DO in Chesapeake Bay

Jiabi Du, Virginia Institute of Marine Science, Physical Sciences, gloucester point, VA, United States and Jian Shen, Virginia Institute of Marine Science, Gloucester Point, VA, United States
Abstract:
Hypoxia in coastal waters is a widespread phenomenon that appears to have been growing globally for at least 60 years. The fact that physical transport processes and biological processes are equally important in determining the bottom DO in Chesapeake Bay is commonly agreed. However, the quantitative impact of physical transport processes is rarely documented. In this study, we use a timescale, vertical exchange time (VET), to quantify the impact of all physical processes that might have on the bottom DO. Simulation of VET from 1985 to 2012 is conducted and the monthly observed DO data along the deep channel in the Bay's main stem is collected. A conceptual bottom DO budget model is applied, using the VET to quantify the physical condition and net oxygen consumption rate to quantify biological activities. The DO budget model results show that the interannual variations of physical conditions accounts for 88.8% of the interannual variations of observed DO. The high similarity between the VET spatial pattern and the observed DO suggests that physical processes play a key role in regulating the DO condition. Model results also show that long-term VET has a slight increase in summer, but no statistically significant trend is found. Correlations among southerly wind strength, North Atlantic Oscillation index, and VET demonstrate that the physical condition in the Chesapeake Bay is highly controlled by the large-scale climate variation. The relationship is most significant during the summer, when the southerly wind dominates throughout the Chesapeake Bay.