Scattering of phytoplankton cells from cytometry during a microcosm experiment

William Moutier1, Lucile Duforêt-Gaurier1, Hubert Loisel1, Melilotus Thyssen2, Xavier Mériaux1, David Desailly1, Lucie Courcot1 and Mathilde Dugenne2, (1)ULCO, CNRS, Laboratory of Oceanology and Geosciences, UMR 8187 LOG, 32 Avenue Foch, 62930 Wimereux, France., Wimereux, France, (2)CNRS, MIO, Marseille, France
Abstract:
This study presents an application of the CytoSense flow cytometer (CytoBuoy b.v., NL) as a powerful tool to analyze optical properties of phytoplankton cells. Recently, Duforêt et al., (2015) developed a methodology to derive the forward, sideward and backward cross section (σFWS, σSWS and σbb, respectively) of individual particles from the CytoSense.
For the first time, this methodology was applied to phytoplankton cultures. A 20 day microcosm experiment was conducted on two phytoplankton species (Chlamydomonas concordia and Thalassiosira pseudonana). We realized daily sampling for biogeochemical and flow cytometer analysis and carried out optical measurements. Scanning electron migrographs (SEM) were performed at different life stages to investigate the cells morphology.
First, CytoSense estimates were tested against radiative transfer computations. The comparison exercise, is based on radiative transfer simulations because for phytoplankton cultures, in situ measurements of σFWS and σSWS, particle by particle, are not available in literature. For that purpose, we build a database of 590,000 simulations, considering homogeneous and multi-layered spheres, to represent the optical properties of a large diversity of phytoplankton cells. Comparison showed that the CytoSense estimates for the cultures are consistent with values predicted by the theory.
Second, the flow cytometer was used to analyze the temporal course of the forward and the sideward efficiency during the entire life-cycle. Results showed differences between the two species. From an ACP analysis, the variation of the optical properties were associated with the chlorophyll-a concentration by living cell, the thickness of the frustule and the aggregate formation. To finish, the bulk backscattering coefficient was rebuilt from σbb of individual cells and compare with the bb measured by a WET Labs ECO-BB9. Relative errors (RE) were between 0.3 and 0.47 and the mean RE was of 0.36. A such work shows for the first time that we can move beyond the scope of the bulk coefficient and obtain the individual scattering of cells.