High Winds and the Vertical Structure of Chl-a in the Southern Ocean: Insights from Remote Sensing and Novel in situ Sensors

Magdalena M Carranza, Scripps Institution of Oceanography, La Jolla, CA, United States, Sarah T Gille, UCSD, La Jolla, CA, United States, Peter J. S. Franks, University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, United States, Kenneth S Johnson, Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States and James B Girton, University of Washington, Applied Physics Laboratory, Seattle, WA, United States
Abstract:
The Southern Ocean is under the influence of strong atmospheric synoptic activity and contains some of the oceans deepest mixed layers. Deep mixed layers can transport phytoplankton below the euphotic zone, and phytoplankton growth is hypothesized to be co-limited by iron and light. Atmospheric forcing drives changes in the mixed-layer depth (MLD) that influence light levels and nutrient input to the euphotic zone. In summer, when the MLD is shallow and close to the euphotic depth, high satellite Chl-a correlate with high winds, consistent with wind-driven entrainment that can potentially increase nutrient concentrations in the euphotic zone. However, correlations between Chl-a and diurnal winds are largest at zero time lag. High winds can inject nutrients on short timescales (< 1 day), but in situ incubation experiments after iron addition indicate phytoplankton growth on slightly longer timescales (> 3-4 days), suggesting that the correlations are not a result of growth. High winds can also entrain Chl-a from a subsurface Chl-a maximum. Novel bio-optical sensors mounted on elephant seals and autonomous floats allow us to examine the vertical structure of Chl-a in the Southern Ocean. In this study, we investigate the occurrence of subsurface Chl-a maxima. We find that surface Chl-a is a relatively good proxy for depth-integrated Chl-a within the euphotic zone but gives an inadequate representation of biomass within the mixed layer, particularly in the summer. Subsurface Chl-a maxima are not uncommon and may occur in all seasons. Chl-a maxima that correlate with particle backscattering in summer and fall are found near the base of the mixed layer, closer to the nutrient maximum than the light maximum, suggesting that nutrient limitation (i.e., essentially iron) can play a greater role than light limitation in governing productivity, and that high winds potentially entrain a subsurface Chl-a maximum into the summer mixed layer.