Multi-Scale Modeling of Wave Attenuation by Vegetation

Qin Jim Chen1, Ling Zhu2 and Agnimitro Chakrabarti2, (1)Louisiana State University, Baton Rouge, LA, United States, (2)Louisiana State University, Civil and Environmental Engineering, Baton Rouge, LA, United States
Abstract:
In the past decade, interest in wave attenuation by vegetation has increased considerably as coastal scientists and engineers search for sustainable solutions to mitigate the impacts of climate change and natural hazards. It is well known that vegetation in wetlands can effectively reduce the flow speed, modify turbulence structure, attenuate wave energy, and affect sediment dynamics. Restoring coastal wetlands and reducing flood risks require improved understanding and better predictive capability of wave and surge attenuation over inundated coastal landscapes with vegetation. The interactions of surface weaves and natural vegetation span over a large range of scales, from turbulence and eddies at the vegetation stem scale to wave generation in vast inundated wetlands of hundreds of square miles under hurricane conditions. The study is focused on a phase-averaged energy-based model and phase-resolving Euler and Navier-Stokes (N-S) solvers with different representations of submerged vegetation. We will present recent advances in multi-scale modeling of wave attenuation by wetland vegetation. Numerical modeling results ranging from vegetation-resolved large eddy simulation under idealized conditions to incorporating vegetation-induced drag forces into conservation laws of momentum and energy for engineering applications will be shown. Effects of vegetation flexibility, turbulence closure, and various wave theories on the prediction of wave attenuation and the choice of vegetation drag coefficients will be discussed.