Genome and metagenome enabled analyses reveal new insight into the global biogeography and potential urea utilization in marine Thaumarchaeota.
Genome and metagenome enabled analyses reveal new insight into the global biogeography and potential urea utilization in marine Thaumarchaeota.
Abstract:
Marine Thaumarchaea are an abundant, important group of marine microbial communities as they fix carbon, oxidize ammonium, and thus contribute to key N and C cycles in the oceans. From an enrichment culture, we have sequenced the complete genome of a new Thaumarchaeota strain, SPOT01. Analysis of this genome and other Thaumarchaeal genomes contributes new insight into its role in N cycling and clarifies the broader biogeography of marine Thaumarchaeal genera. Phylogenomics of Thaumarchaeota genomes reveal coherent separation into clusters roughly equivalent to the genus level, and SPOT01 represents a new genus of marine Thaumarchaea. Competitive fragment recruitment of globally distributed metagenomes from TARA, Ocean Sampling Day, and those generated from a station off California shows that the SPOT01 genus is often the most abundant genus, especially where total Thaumarchaea are most abundant in the overall community. The SPOT01 genome contains urease genes allowing it to use an alternative form of N. Genomic and metagenomic analysis also reveal that among planktonic genomes and populations, the urease genes in general are more frequently found in members of the SPOT01 genus and another genus dominant in deep waters, thus we predict these two genera contribute most significantly to urea utilization among marine Thaumarchaea. Recruitment also revealed broader biogeographic and ecological patterns of the putative genera. The SPOT01 genus was most abundant at colder temperatures (<16 C), reflective of its dominance at subpolar to polar latitudes (>45 degrees). The genus containing Nitrosopumilus maritimus had the highest temperature range, and the genus containing Candidatus Nitrosopelagicus brevis was typically most abundant at intermediate temperatures and intermediate latitudes (~35-45 degrees). Together these genome and metagenome enabled analyses provide significant new insight into the ecology and biogeochemical contributions of marine archaea.