Impact of uncertainty in surface forcing on the new SODA 3 global reanalysis

James Carton1, Gennady A Chepurin1 and Ligang Chen2, (1)University of Maryland College Park, College Park, MD, United States, (2)University of Maryland, College Park, MD, United States
Abstract:
An updated version of the Simple Ocean Data Assimilation reanalysis (SODA 3)has been constructed based on GFDL MOM ocean and sea ice numerics, with improved resolution and other changes. A series of three 30+ year long global ocean reanalysis experiments (1980-2014) have carried out which differ only in the choice of specified daily surface heat, momentum, and freshwater forcing: MERRA2, ERA-Int, and ERA-20. The first two forcing data sets make extensive use of satellite observations while the third only uses surface observations. The differences in the resulting SODA reanalysis experiments allow us to explore a major source of error in ocean reanalyses, which is the uncertainty introduced by errors in the surface forcing. The modest differences among the experiments tend to be concentrated at higher latitude where the MERRA2-SODA has a somewhat cooler (1C), saltier (1psu) surface leading to lower (10cm) sea level. Cooler conditions affect the upper 300m heat content at high latitude (although MERRA2-SODA HC300 is higher in the subtropics). RMS differences are small except for surface salinity at high latitude (1psu). The implications for such issues thermosteric sea level, the overturning circulation, and the rise of global heat storage will be discussed.