Can functional equivalency between seagrasses and other coastal habitats offset loss of ecosystem health with reduced seagrass abundance?

Just Cebrian, University of South Alabama, Marine Science, Mobile, AL, United States, Andrea Anton, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, Bart Christiaen, Washington State Department of Natural Resources, United States, Rachel Gamble, Dauphin Island Sea Lab, Dauphin Island, United States and Jason Stutes, Pentec Environmental/Hart Crowser, Inc, United States
Abstract:
Seagrasses provide important ecosystem services, such as habitat for fisheries, shoreline stabilization, pollution filtration, and carbon sequestration. Thus, seagrass loss may seriously compromise coastal ecosystem services worldwide. However, functional equivalency (or redundancy) between seagrasses and other components of coastal ecosystems, such as algae and marshes, can offset the loss of services under declining seagrass abundance. That is, if seagrasses are redundant with algae and marshes in their functionality, then ecosystem services may be preserved in changing coasts with declining seagrass but pervading algal and marsh communities. Here we present several instances of functional redundancy between seagrasses and other coastal components in the Northern Gulf of Mexico. We first examine how net ecosystem production, which sets a limit to carbon accumulation and export to neighbouring communities, changes with eutrophication-induced seagrass decline and concomitant increase in algal abundance. Results from comparative and manipulative field studies are congruent and show no change in net ecosystem production despite drastic shifts from seagrass to algal dominance. We further provide evidence that fringing marshes can counteract the reduction in habitat provision for structure-dependent fisheries due to seagrass loss. Using a large-scale field comparison we show that, as long as fringing marshes are preserved, the abundance and diversity of structure-dependent fisheries are maintained despite large seagrass loss. Functional redundancy for habitat provision also occurs between seagrasses and well-oxygenated macroagal stands, since canopy-dwelling faunal abundance remains unaltered if seagrasses are replaced by normoxic algal stands. In concert the results demonstrate substantial functional equivalency between seagrasses and other coastal components, and indicate seagrass loss does not necessarily result in depressed coastal ecosystem health and services.