XBeach and CSHORE Numerical Model Assessment of the Beach and Foredune Morphodynamic Response of a Barrier Island during Hurricane Storm Surge Inundation – Folletts Island Case Study
Abstract:
Follett’s Island (FI) is a low-lying sediment-starved barrier island located on the Upper Texas Coast, a stretch of coastline along the Gulf of Mexico experiencing on average four hurricanes and four tropical cyclones per decade. During Hurricane Ike, water levels and wave heights at FI exceeded the 100-year and 40-year return values, respectively. This caused the island to undergo a sequence of four distinct interaction regimes, including impact, overtopping, inundation, and storm surge ebb. Each regime caused unique morphology changes to the island. The physical processes governing the real-time morphodynamic response of the beach and dune system during 96 hours of hurricane impact were modeled using XBeach (2D) and CSHORE (1D). Hydrodynamic boundary conditions were obtained from ADCIRC/SWAN model runs validated with measured buoy and wave gauge data while LiDAR surveys provided pre- and post-storm measured topography. XBeach displayed a decent model skill and was very useful in qualitatively visualizing erosion and deposition patterns during each regime. CSHORE also displayed a decent model skill and was able to accurately predict the post-storm beach slope and shoreline, but was less effective at simulating the foredune morphology. Modeling results show that the complete morphodynamic response of FI to Hurricane Ike was far more complex than suggested by only before and after storm topography surveys.