Reshaping the Antarctic Circumpolar Current via Antarctic Bottom Water Export
Abstract:
We test this hypothesis using an idealized, eddy-resolving sector model of the ACC. We find that response of the ACC to switching off AABW production depends on whether the topography is high enough to block barotropic potential vorticity (PV) contours. If re-entrant PV contours exist then the ACC responds similarly to switching off AABW production or halving the westerly wind strength: for example the ACC transport drops by 10-20% and the surface speed in the meander decreases by around 25%. If PV contours are blocked then the ACC transport becomes insensitive to the westerlies, but switching off AABW production still leads to a reduced ACC transport through a wider, slower meander. These results suggest that the warming and freshening of AABW observed in recent decades may have a detectable impact on the surface circulation of the ACC.