Monsoon Variability in the Arabian Sea from Enhanced and Standard Horizontal Resolution Coupled Climate Models.
Julie McClean1, Carmela Veneziani2, Mathew E Maltrud2, Mark Taylor3, David C Bader4, Marcia L Branstetter5, Katherine J Evans5 and Salil Mahajan5, (1)Scripps Institution of Oceanography, La Jolla, CA, United States, (2)Los Alamos National Laboratory, Los Alamos, NM, United States, (3)Sandia National Labs, Albuquerque, NM, United States, (4)Lawrence Livermore National Laboratory, Livermore, CA, United States, (5)Oak Ridge National Laboratory, Oak Ridge, TN, United States
Abstract:
The circulation of the upper ocean in the Arabian Sea switches direction seasonally due to the change in direction of the prevailing winds associated with the Indian Monsoon. Predictability of the monsoon circulation, however, is uncertain due to incomplete understanding of the physical processes operating on the monsoon and other time scales, particularly interannual and intraseasonal. We use the Community Earth System Model (CESM) with enhanced horizontal resolution in each of its components relative to standard coupled climate model resolution, to better understand these time scale interactions. A standard resolution CESM counterpart is used to assess how horizontal resolution impacts the depiction of these processes. In the enhanced resolution case, 0.25° Community Atmosphere Model 5 (CAM5) is coupled to, among other components, the tripolar nominal 0.1° Parallel Ocean Program 2 (POP2). The fine resolution CESM simulation was run for 85 years; constant 1850 preindustrial forcing was used throughout the run, allowing us to isolate internal variability of the coupled system. Model parameters were adjusted (“tuned”) to produce an acceptably small top of the atmosphere radiation imbalance.
The reversal of the Somali Current (SC), the western boundary current off northeast Africa, has typically been associated with that of the monsoon. The SC reverses from southwestward in boreal winter to northeastward in summer; coastal upwelling is induced by the summer monsoonal winds. Recently it has been shown from new observations that the SC starts to reverse prior to the monsoon switch. Westward propagating Rossby waves have been implicated as responsible for the early SC reversal. We will discuss the sequencing of remote and local forcing on the timing of the spring inter-monsoonal switch in the direction of the SC and the appearance of the Great Whirl off the Oman Coast. Particularly, we consider how the Indian Ocean Dipole (IOD) acts to modify the seasonal strength and variability of the western boundary current system including upwelling. We look for a connection between interannual upwelling variability and that of rainfall off the west coast of India. As well, we examine changes due to the IOD in the upper ocean temperature and salinity structure along the Rossby wave propagation route in the Arabian Sea.