All Microorganisms Must Die, But How Many Get Lysed By Viruses? - Approaches to Assessing the Significance of Nano-Sized Agents of Mortality Among Communities of Phytoplankton

Debra Jo Fobbe1, Lauren J Simmons1 and John Alexander Berges2, (1)University of Wisconsin Milwaukee, Biological Sciences, Milwaukee, WI, United States, (2)University of Wisconsin-Milwaukee, Department of Biological Sciences and School of Freshwater Sciences, Milwaukee, WI, United States
Abstract:
Work with laboratory cultures and phytoplankton blooms has shown the potential for viruses to be dominant causes of mortality, but viral effects on phytoplankton community dynamics are less clear and more difficult to assess. Reasons for this include that viral-host relationships are difficult to establish and ongoing 'arms-races' of biological defenses and adaptations over short time scales obscure what is happening. We approached the problem using a small, well-studied urban pond as a model system, and monitoring phytoplankton and viral dynamics weekly through two years using flow cytometry. Flow cytometry allowed us to distinguish and enumerate phytoplankton groups and with cell staining, estimate proportions of living and dead cells. We adapted published methods for counting viruses using flow cytometry, and validated them against epifluorescent techniques. Modifications included: pre-filtration of samples through GF/F filters, fixation with glutaraldehyde, addition of EDTA prior to staining with SYBR Green©, and use of ultra-pure water as a diluent to obtain optimum concentrations. Viral counts ranged from 106 per ml (under ice in winter) to over 109 per ml (as summer phytoplankton blooms peaked). Viral abundances exceeded phytoplankton by up to three orders of magnitude. We could distinguish five groups of viruses based on SYBR Green© fluorescence and side scatter, and these showed seasonal changes. While many of these viruses probably infected heterotrophic bacteria, in some periods increases in viruses correlated with decline of phytoplankton groups, when changes in environmental parameters (e.g. temperature, irradiance, nutrients) were not apparent. Best correlations were found within 6 µm and smaller size fractions of phytoplankton versus larger groups. To examine links between viral lysis and phytoplankton, experiments are currently being conducted concentrating viruses and incubating them with natural communities of phytoplankton to monitor infection and lysis. Such experiments will be conducted seasonally, and use viral isolates collected in different periods of the years to address questions concerning how long specific viral types persist and maintain infectivity.