Export of Algal Communities from Land Fast Arctic Sea Ice Influenced by Overlying Snow Depth and Episodic Rain Events

Susanne Neuer1, Andrew R Juhl2, Craig Aumack3, Cora McHugh1, Megan Alyse Wolverton1 and Kyle Kinzler1, (1)Arizona State University, Tempe, AZ, United States, (2)Columbia University of New York, Department of Earth and Environmental Science, New York, NY, United States, (3)Columbia University of New York, Palisades, NY, United States
Abstract:
Sea ice algal communities dominate primary production of the coastal Arctic Ocean in spring. As the sea ice bloom terminates, algae are released from the ice into the underlying, nutrient-rich waters, potentially seeding blooms and feeding higher trophic levels in the water column and benthos. We studied the sea ice community including export events over four consecutive field seasons (2011-2014) during the spring ice algae bloom in land-fast ice near Barrow, Alaska, allowing us to investigate both seasonal and interannual differences. Within each year, we observed a delay in algal export from ice in areas covered by thicker snow compared to areas with thinner snow coverage. Variability in snow cover therefore resulted in a prolonged supply of organic matter to the underlying water column. Earlier export in 2012 was followed by a shift in the diatom community within the ice from pennates to centrics. During an unusual warm period in early May 2014, precipitation falling as rain substantially decreased the snow cover thickness (from snow depth > 20 cm down to 0-2 cm). After the early snowmelt, algae were rapidly lost from the sea ice, and a subsequent bloom of taxonomically-distinct, under-ice phytoplankton developed a few days later. The typical immured sea ice diatoms never recovered in terms of biomass, though pennate diatoms (predominantly Nitzschia frigida) did regrow to some extent near the ice bottom. Sinking rates of the under-ice phytoplankton were much more variable than those of ice algae particles, which would potentially impact residence time in the water column, and fluxes to the benthos. Thus, the early melt episode, triggered by rain, transitioned directly into the seasonal melt and the release of biomass from the ice, shifting production from sea ice to the water column, with as-of-yet unknown consequences for the springtime Arctic food web.