Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones

Brad Seibel, University of Rhode Island, Kingston, RI, United States
Abstract:
Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.