Distribution and cycling of lead in the high and low latitudinal Atlantic Ocean

Christian Schlosser1, Jan-Lukas Menzel Barraqueta1, Insa Rapp2, Joaquin Pampin Baro1 and Eric P. Achterberg1, (1)GEOMAR Helmholtz Centre for Ocean Research Kiel, Chemical Oceanography, Kiel, Germany, (2)Geomar - Hemholtz Centre for Ocean Research, Chemical Oceanography, Kiel, Germany
Abstract:
Lead (Pb) is a toxic trace metal; even small quantities are lethal to most unicellular and multicellular organisms. Major sources of lead to the environment are the burning of coal, industrial mining, and the use of leaded gasoline (which has not been entirely phased out of use around the globe). These and other anthropogenic sources of Pb continue to pollute the environment and affect primary production and the development of heterotrophic organisms in the sea. Pb concentrations in oceanic waters are ten to a hundred times higher in surface waters than in deep waters (0.05 – 0.1 nmol L-1 compared to 1 – 5 pmol L-1), this deposition-like profile clearly reflecting the significant anthropogenic input of Pb to the ocean.

In order to explore the cycling and fate of this anthropogenic Pb, we collected seawater from the polar North Atlantic (JC274 in 2013, GEOVIDE in 2014), the sub-tropical Atlantic (D361 in 2011 & M107 in 2014), the South Atlantic (JC068 in 2012), and the Atlantic sector of the Southern Ocean (JC271 in 2013). These samples were analyzed for their dissolved and soluble and total dissolvable Pb concentrations by off-line pre-concentration using a SeaFAST device (Elemental Science Inc.) and isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS, Thermo ElementXR).

Results indicate that dissolved Pb exists mainly as colloidal species, which, as the precursors of larger particles are subsequently critical for the removal of lead from the water column. For example, the removal of colloidal Pb through particle scavenging was observed in the high productivity waters of the Mauritanian upwelling region and at the outlet of the La Plata River on the South American shelf.

In terms of Pb pollution, highest Pb concentrations (up to 60 pmol L-1) were observed in the Agulhas current. But even remote locations, such as the northern Arctic Ocean and near South Georgia in the Southern Ocean, activities of man had an impact; the Pb concentrations of 30 pmol L-1 found there compare to modern values in the Baltic Sea.