Can unforced radiative variability explain the “hiatus”?

Aaron Donohoe, Applied Physics Laboratory University of Washington, Seattle, WA, United States
Abstract:
The paradox of the “hiatus” is characterized as a decade long period over which global mean surface temperature remained relatively constant even though greenhouse forcing forcing is believed to have been positive and increasing. Explanations of the hiatus have focused on two primary lines of thought: 1. There was a net radiative imbalance at the top of atmosphere (TOA) but this energy input was stored in the ocean without increasing surface temperature or 2. There was no radiative imbalance at the TOA because the greenhouse forcing was offset by other climate forcings. Here, we explore a third hypothesis: that there was no TOA radiative imbalance over the decade due to unforced, natural modes of radiative variability that are unrelated to global mean temperature. Is it possible that the Earth could emit enough radiation to offset greenhouse forcing without increasing its temperature due to internal modes of climate variability?

Global mean TOA energy imbalance is estimated to be 0.65 W m-2 as determined from the long term change in ocean heat content – where the majority of the energy imbalance is stored. Therefore, in order to offset this TOA energy imbalance natural modes of radiative variability with amplitudes of order 0.5 W m-2 at the decadal timescale are required. We demonstrate that unforced coupled climate models have global mean radiative variability of the required magnitude (2 standard deviations of 0.57 W m-2 in the inter-model mean) and that the vast majority (>90%) of this variability is unrelated to surface temperature radiative feedbacks. However, much of this variability is at shorter (monthly and annual) timescales and does not persist from year to year making the possibility of a decade long natural interruption of the energy accumulation in the climate system unlikely due to natural radiative variability alone given the magnitude of the greenhouse forcing on Earth.

Comparison to observed satellite data suggest the models capture the magnitude (2 sigma = 0.61 W m-2) and mechanisms of internal radiative variability but we cannot exclude the possibility of low frequency modes of variability with significant magnitude given the limited length of the satellite record.