A Real-Time California Coastal Ocean Nowcast/Forecast System: Skill Assessment, User Products, and Transition from Research to Operations

John D Farrara1, Yi Chao1, Fei Chai2 and Hongchun Zhang3, (1)Remote Sensing Solutions, Inc., Pasadena, CA, United States, (2)University of Maine, School of Marine Sciences, Orono, ME, United States, (3)University of California Los Angeles, Los Angeles, CA, United States
Abstract:
The real-time California coastal ocean nowcast/forecast system is described. The model is based on the Regional Ocean Modeling System (ROMS) and covers the entire California coastal ocean with a horizontal resolution of 3 km and 40 vertical layers. The atmospheric forcing is derived from the operational regional atmospheric model forecasts. The lateral boundary conditions are provided by the operational ocean model forecasts. A multi-scale 3-dimensional variational (3DVAR) data assimilation scheme is used to assimilate both in situ (e.g., vertical profiles of temperature and salinity) and remotely sensed data from both satellite (e.g., sea surface temperature and sea surface height) and land-based platforms (e.g., surface current). The performance of our nowcast/forecast system is evaluated in real-time by a number of metrics that are published as soon as they become available. User tools and products have been developed for both general users and super-users (e.g., NOAA Office of Response and Restoration and USCG). Recent results comparing the 3DVAR with the ensemble Kalman Filter (EnKF) using Data Assimilation Research Testbed (DART) will be presented. Preliminary results coupling the ROMS circulation model with a biogeochemistry/ecosystem model (i.e., CoSiNE) will also discussed. Cloud computing services (e.g., Microsoft, Google) are now being tested to increase the reliability and timeliness in order to be accepted as a truly operational system in the near future.