Development of a Low Cost, Compact, Spectrophotometric pH Sensor
Development of a Low Cost, Compact, Spectrophotometric pH Sensor
Abstract:
Understanding the ecological impacts of oceanic CO2 uptake in the post-industrial world requires high spatial and temporal resolution measurements of inorganic carbon. Most researchers aim for measuring two of the four inorganic carbon parameters (partial pressure of CO2, total alkalinity, total dissolve inorganic carbon, and pH), in order to fully characterize the carbonate system. While this is desirable in many circumstances, in some cases it may be possible to fully characterize the system using pH and salinity, or even to use pH alone as a proxy to the health of calcifying marine organisms. The development of relatively inexpensive spectrophotometric pH sensors compatible with Lagrangian drifters would greatly improve the ability of researchers to characterize the changing oceanic carbonate system. We have designed and tested a novel, miniaturized, submersible, autonomous opto-fluidic device that can be manufactured at a relatively low cost. The flexible design can be deployed independent of or in tandem with GDP style drifters and will enable spectrophotometric pH technology on a host of drifting platforms and buoys. This device uses a dual wavelength light emitting diode (LED) light source, low volume mixer, and an optical flow-cell mounted to the electronic controller board. Laboratory testing shows that this device measures pH with similar accuracy and precision to other spectrophotometric methods such as the SAMI-pH.