Morphological Dependence of Element Stoichiometry in the H. americanus Exoskeleton

Robert Nguyen Ulrich, Virginia Tech, Departmen of Geosciences, Blacksburg, VA, United States, Sebastian Tobias Mergelsberg, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States and Patricia M Dove, Virginia Tech, Geosciences, Blacksburg, VA, United States
Abstract:
The crustacean exoskeleton is a complex biocomposite of inorganic mineral and organic macromolecules that expresses highly divergent morphologies across different taxa. While the structures and compositions of the organic framework show complex links to environmental and developmental pressures, little is known about the mineral chemistry.

Previous studies of the cuticle have assumed that magnesium, phosphorous, and other trace metals are largely contained in the inorganic mineral fraction. Due to analytical limitations of structural analyses and in situ spectroscopic methods, the stoichiometry of the organic and inorganic portions could not be resolved. For example, previous Raman and XRD studies conclude the higher concentrations of trace elements, such as P and Mg measured in reinforced structures, e.g. the claw and abdomen, are primarily determined by the mineral fraction.

Using the American Lobster (Homarus americanus) as a model organism to establish relationships between body part function and cuticle composition, this study quantified the distributions of Mg and P in the mineral and organic fractions. The experiments were designed to dissolve the exoskeleton of 10 body parts using three types of solutions that were specific to extracting 1) the mineral phase, 2) protein, and 3) polysaccharide. Analysis of the solutions by ICP-OES shows the mineral phase contains magnesium and phosphorous at concentrations sufficient to support the formation of calcium-magnesium and phosphate minerals. The protein fraction of the body parts contains significantly more Mg and P than previously hypothesized, while the levels of P contained in the organic portion are fairly constant.

The findings demonstrate the lobster cuticle contains a significant amount of non-mineralized P and Mg that is readily water-soluble in the protein component. However, for those body parts used for defense and food acquisition, such as the claw, the mineral component determines the overall composition of the exoskeleton.