Underwater Hyperspectral Imaging (UHI) for Assessing the Coverage of Drill Cuttings on Benthic Habitats
Lars Martin Sandvik Aas1, Sabine Cochrane2, Stefan Ekehaug1, Ingrid M Hansen1 and Ivar Erdal1, (1)Ecotone, Trondheim, Norway, (2)Akvaplan-Niva, Tromsø, Norway
Abstract:
Larger-scale mapping of seabed areas requires improved methods in order to obtain effective and sound marine management. The state of the art for visual surveys today involves video transects, which is a proven, yet time consuming and subjective method.
Underwater hyperspectral imaging (UHI) utilizes high color sensitive information in the visible light reflected from objects on the seafloor to automatically identify seabed organisms and other objects of interest (OOI). A spectral library containing optical fingerprints of a range of OOI’s are used in the classification.
The UHI is a push-broom hyperspectral camera utilizing a state of the art CMOS sensor ensuring high sensitivity and low noise levels. Dedicated lamps illuminate the imaging area of the seafloor. Specialized software is used both for processing raw data and for geo-localization and OOI identification. The processed hyperspectral image are used as a reference when extracting new spectral data for OOI's to the spectral library. By using the spectral library in classification algorithms, large sea floor areas can automatically be classified.
Recent advantages in UHI classification includes mapping of areas affected by drill cuttings. Tools for automated classification of seabed that have a different bottom composition than adjacent baseline areas are under development. Tests have been applied to a transect in gradient from the drilling hole to baseline seabed. Some areas along the transect were identified as different compared to baseline seabed. The finding was supported by results from traditional seabed mapping methods. We propose that this can be a useful tool for tomorrows environmental mapping and monitoring of drill sites.