Why Pulse If You Live in Turbulent Flow? Studying the Benefits of Pulsing Behavior in Xeniid Corals

Julia Eleonore Samson, University of North Carolina at Chapel Hill, Shilpa Khatri, UC Merced, Roi Holzman, Interuniversity Institute for Marine Sciences in Eilat, Uri Shavit, Technion - Israel Institute of Technology, Haifa, Israel and Laura Miller, University of North Carolina at Chapel Hill, Mathematics, Chapel Hill, NC, United States
Abstract:
Pulsing behavior in benthic cnidarians increases local water flows and thus mass transfer (i.e. nutrient exchange) between organisms and environment. This increased mass transfer plays an especially important role in photosynthetic organisms by increasing the exchange rate of oxygen and carbon dioxide, allowing for increased metabolic rates. For organisms living mostly in the boundary layer of quiet water bodies, the benefits of pulsing to create a (feeding) current seem to be straightforward; the benefit of increased flow around the organism is larger than the cost of sustaining an energetically expensive behavior. Xeniid corals, however, are often found in turbulent flows, and it is unclear what the benefits of pulsing behavior are in an already well-mixed environment. Using lab experiments (particle image velocimetry or PIV), computational fluid dynamics simulations (immersed boundary method), and field data, we explore the reason(s) behind this paradoxical observation.

3D video recordings from pulsing corals in the lab and in the field were used to extract the kinematics of the pulsing motion. These kinematics served as input to create computational fluid dynamics simulations that allow us to further explore and compare fluid flows resulting from different situations (presence or absence of background flow around a coral colony, for example). The PIV data collected in the lab will serve to validate these simulations. Developing our computational models further will allow us to study the potential benefit of pulsing on mass transfer and to explore the advantage of collective pulsing behavior. Xeniid corals form colonies in which collective pulsing patterns can be observed. These patterns, however, have not yet been quantified and it is unclear how they arise, since cnidarians lack a centralized nervous system.