Seasonality in the Mesozooplankton Community of Delaware Bay, USA

Adam Wickline, University of Delaware and Jonathan Cohen, University of Delaware, Lewes, DE, United States
Abstract:
Zooplankton communities in temperate estuaries undergo seasonal shifts in abundance and species composition, though the physical/biological mechanisms behind these shifts vary among systems. Delaware Bay is a well-mixed estuary on the mid-Atlantic coast with predictable seasonal variation in environmental conditions and circulation. To understand factors influencing mesozooplankton community dynamics in this system, we conducted seasonal sampling at 16 stations over the estuary's salinity range in 2014-2015. Sampling paralleled the last similar investigation into Delaware Bay zooplankton, conducted in the early 1950s. Biomass, measured as dry weight and totaled for all stations, was low in late summer and high in spring and fall. Bio-volume, measured either as displacement volume or calculated from ZooScan processing to exclude detritus, also showed a similar pattern. Across seasons, the mesozooplankton community was dominated by copepods, representing over 60% of the relative abundance at each station. Acartia tonsa was the dominant calanoid species in summer and fall, with abundances up to 7,353 ind. m-3, which is similar to the 1950s. In spring, Centropages hamatus and C. typicus were dominant at densities up to 2,550 ind. m-3 throughout the estuary, which is an increase from the 1950s. Environmental data suggest the seasonal shift in dominance from neritic Centropages to estuarine Acartia could be driven by increased stratification of the estuary during periods of high river discharge in spring, creating a two-layer system with a bottom advection current fed by the coastal ocean, bringing coastal species into the estuary. As river discharge decreases, the advection current is reduced, creating a well-mixed estuary and allowing Acartia to dominante. As river discharge is ultimately determined by precipitation, which is predicted to increase during winter with climate change in this region, the phenology of mesozooplankton species dynamics could shift as well.