Carbon Metabolism of Prochlorococcus sp. Under Nitrogen Limitation

Martin Szul, University of Tennessee, Microbiology, Knoxville, TN, United States
Abstract:
Phytoplankton growth rates are limited by nutrient availability in the world’s euphotic oligotrophic oceans. In these vast biomes, convergent evolutions of the dominant planktonic populations suggest traits such as small genome and cell size provide selective advantages. While these traits have been shown to improve both thrift and competition for scarce nutrients, how fitness is manifest through reductive evolution on metabolisms remains poorly understood. To develop a better understanding of carbon fate and flux under nutrient limitation, we grew axenic Prochlorococcus under nitrogen-limited and nitrogen-replete conditions and measured metabolite pools, the flux of carbon through these pools as well as photosynthesis, photosystem health and efficiency. Our data show cells under nitrogen limitation reduce rates of both metabolite flux and total carbon fixation while maintaining elevated metabolite pool levels and releasing a larger proportion of total fixed carbon to the environment. Accounting for these observations, potential metabolic mechanisms that contribute to the fitness of Prochlorococcus in the nutrient limited oceans will be discussed.