Effects of Ocean Acidification on Fish Eggs and Larvae in Laboratory Experiments and Naturally High-pCO2 Upwelling Systems

Sara Shen and David M Checkley Jr, University of California, San Diego, Scripps Institution of Oceanography, La Jolla, CA, United States
Abstract:
We investigated the effects of elevated pCO2 on (1) the morphology and behavior of fish larvae in laboratory experiments and (2) the distribution and abundance of fish eggs and larvae in an upwelling system. The vestibulo-ocular reflex (VOR) is a compensatory eye rotation that stabilizes images during movement and is initiated by utricular otolith movement. It is critically important for survival. We identified a 38% increase in the area of the utricular otoliths of larval white seabass (Atractoscion nobilis) reared at 2500 μatm pCO2 (treatment) compared to that of larvae reared at 400 μatm pCO2 (control). Despite the increase in otolith size, the mean gain of treatment larvae (0.39 ± 0.05, n= 28) was not statistically different from that of control larvae (0.30 ± 0.03, n= 20). During a fisheries research cruise in the Peruvian upwelling system in 2013, we collected eggs and larvae of Peruvian anchoveta (Engraulis ringens) over a wide range of pCO2, from 200-1200 μatm. Anchoveta support the world’s largest single-species fishery and reside in arguably the most persistently high-pCO2 environment in the ocean. The probability of egg capture was maximal at the lowest (<350 μatm) as well as highest (>1000 μatm) pCO2 and increased with increasing chlorophyll a concentration. Larval abundance was maximal in the mid-range of zooplankton biovolume (1-3 cm3/1,000 m3). The occurrence of eggs in high pCO2 and relationship of eggs and larvae to food availability are consistent with the hypothesis that anchoveta tolerate a high pCO2 and food environment. Our research on the early life stages of these two fish leads us to believe that species that have evolved in high-pCO2 environments (e.g., anchoveta) may be able to cope with OA. Furthermore, OA may have only subtle effects on behaviors that are critical for survival (e.g., VOR).