Integrating Climate Science, Marine Ecology, and Fisheries Economics to Predict the Effects of Climate Change on New England lobster Fisheries

Arnault Le Bris1, Andrew J Pershing1, Daniel S Holland2, Katherine Mills1 and Chin-Hwa Jenny Sun1, (1)Gulf of Maine Research Institute, Portland, ME, United States, (2)Northwest Fisheries Science Center, Seattle, WA
Abstract:
The Gulf of Maine and the northwest Atlantic shelf have experienced one of the fastest warming rates of the global ocean over the past decade, and concerns are growing about the long-term sustainability of the fishing industries in the region. The lucrative American lobster fishery occurs over a steep temperature gradient, providing a unique opportunity to evaluate the consequences of climate change and variability on marine socio-ecological systems. This study aims at developing an integrated climate, population dynamics, and fishery economics model to predict consequences of climate change on the American lobster fishery. In this talk, we first describe a mechanistic model that combines life-history theory and a size-spectrum approach to simulate the dynamics of the population. Results show that as temperature increases, early growth rate and predation on small individuals increases, while size-at-maturity, maximum length and predation on large individuals decreases, resulting in a lower recruitment in the southern New-England and higher recruitment in the northern Gulf of Maine. Second, we present an integrated fishery and economic module that links temperature to landings and price through its influence on catchability and abundance. Preliminary results show that temperature is positively correlated with landings and negatively correlated with price in the Gulf of Maine. Finally, we discuss how model simulations under various fishing effort, market and climate scenarios can be used to identify adaptation opportunities to improve the resilience of the fishery to climate change.