Consider a source: Microplastic in rivers is abundant, mobile, and selects for unique bacterial assemblages

Timothy James Hoellein, John J Kelly, Amanda McCormick and Maxwell London, Loyola University Chicago, Department of Biology, Chicago, IL, United States
Microplastic particles (< 5mm) in oceans are an emerging ecological concern. While rivers are considered a major source of microplastic to oceans, little is known about microplastic abundance, transport, and biological interactions in rivers. Our initial research an urban river showed microplastic collected downstream of a wastewater treatment plant (WWTP) was more abundant than upstream, more abundant than many marine sites, and had higher occurrences of bacterial taxa associated with plastic decomposition and gastrointestinal pathogens than natural habitats (e.g., seston and water column). Based on these data, we conducted follow-up projects to measure 1) the role of WWTPs on microplastic abundance in 10 rivers, 2) microplastic concentrations in WWTP influent, sludge, and effluent, and 3) deposition rates of microplastic downstream of a WWTP point source. In each project, we characterized bacterial community composition on microplastic and natural habitats using next-generation Illumina sequencing. Although maximum concentrations varied among 10 sites, microplastic concentration was significantly higher downstream of WWTPs than upstream. WWTPs retained a significant component of microplastic in two activated sludge plants (>90%). Microplastic deposition length in an urban river was >2 km, and concentrations were orders of magnitude higher in the sediment than water column. Finally, bacterial communities were distinct on microplastic in water column and sediment habitats, yet communities became more similar with increasing distance from WWTP effluent sites. These data support the role of rivers as sources of microplastic to downstream ecosystems, but also illustrate that rivers are active sites of microplastic retention and bacterial colonization. Results will inform policies and engineering advances for mitigating microplastic inputs and redistribution. We advocate for research on plastic in the environment which synthesizes data from freshwater and marine disciplines. This approach is needed to facilitate quantitative analyses of the physical and biological factors driving the ‘life cycle’ of plastic at a global scale.