Precision Geo-Referenced Navigation for Deep-Diving Autonomous Underwater Gliders and Enabled Scientific Applications
Abstract:
While the concept of OWTT-iUSBL is not new, we argue that the maturity of acoustic modem technology combined with the emergence of very low-power precision timing and attitude sensors will make it possible to deploy OWTT-iUSBL systems on low-power underwater vehicles in the near term. Here, two recent supporting analyses are reviewed: (1) the achievable accuracy of OWTT-iUSBL navigation including single-fix error budgets for specific system configurations using representative commercially available components; and (2) the impact of a specific low-power configuration on the endurance of a deep-profiling autonomous underwater glider. Our analyses suggest that a practically realizable OWTT-iUSBL system could provide navigational accuracy 1–2 orders of magnitude superior to that presently achievable using periodic ascents to acquire global positioning system (GPS), and, for sufficiently deep deployments, actually yield more near-bottom data despite reducing overall vehicle endurance. Furthermore, we present some potential scientific applications that might benefit from these technologies including (but not limited to) circulation, mixing, and possibly depth integrated horizontal displacement current estimates of dense overflows as well as tracking episodic events, such as plumes and dynamic fronts. This technology might also enable new concepts collaborative glider and long-range AUV operations.