Precision Geo-Referenced Navigation for Deep-Diving Autonomous Underwater Gliders and Enabled Scientific Applications

James C Kinsey1, Michael Jakuba1, James W. Partan1 and Sarah Webster2, (1)Woods Hole Oceanographic Institution, Woods Hole, MA, United States, (2)Applied Physics Lab, Univ of Washington, Seattle, WA, United States
Abstract:
Recent and underway development efforts promise to deliver long endurance and deep-diving autonomous underwater gliders with the potential to persistently observe the deep (6000 m) ocean interior and sea floor over time scales of months to years. Both deep- and shallow-diving gliders navigate primarily by dead-reckoning between surfacing for GPS fixes, a paradigm that precludes their use in missions where science objectives call for precise navigation deep in the water column or near the deep sea floor. Coupled with an autonomous surface vessel, one-way travel time inverted ultra-short baseline positioning (OWTT-iUSBL) offers a compelling alternative to infrastructure-intensive external acoustic aiding. Such systems could provide navigation aiding to multiple underwater vehicles while providing autonomy and endurance for the system as a whole comparable to that of a solitary vehicle.

While the concept of OWTT-iUSBL is not new, we argue that the maturity of acoustic modem technology combined with the emergence of very low-power precision timing and attitude sensors will make it possible to deploy OWTT-iUSBL systems on low-power underwater vehicles in the near term. Here, two recent supporting analyses are reviewed: (1) the achievable accuracy of OWTT-iUSBL navigation including single-fix error budgets for specific system configurations using representative commercially available components; and (2) the impact of a specific low-power configuration on the endurance of a deep-profiling autonomous underwater glider. Our analyses suggest that a practically realizable OWTT-iUSBL system could provide navigational accuracy 1–2 orders of magnitude superior to that presently achievable using periodic ascents to acquire global positioning system (GPS), and, for sufficiently deep deployments, actually yield more near-bottom data despite reducing overall vehicle endurance. Furthermore, we present some potential scientific applications that might benefit from these technologies including (but not limited to) circulation, mixing, and possibly depth integrated horizontal displacement current estimates of dense overflows as well as tracking episodic events, such as plumes and dynamic fronts. This technology might also enable new concepts collaborative glider and long-range AUV operations.