The effects of ocean circulation on ocean-ice interaction and potential feedbacks in an idealized shelf cavity
The effects of ocean circulation on ocean-ice interaction and potential feedbacks in an idealized shelf cavity
Abstract:
The West Antarctic ice sheet is melting at unprecedented rates, which will impact global sea level rise. The ocean may be playing the dominant role in this ice melt through the upwelling of warm and salty Circumpolar Deep Water (CDW) in regions such as Pine Island Glacier (PIG). There is evidence that the Antarctic Slope Front at the continental shelf constrains shoreward transport of CDW by mesoscale eddies. However, little is known about the ocean-ice interaction and potential feedbacks that take place once this water is advected into ice shelf cavities. In this talk we use MITgcm to simulate an idealized setup of the PIG ice shelf cavity, similar to the setup in De Rydt et al. 2014, to understand the effects of ocean circulation and potential feedbacks of ice-shelf melt on the ocean circulation. To do this we run the model in two different configurations with and without a wind-driven current at the northern edge of the ice shelf and annually updating the geometry of the ice shelf based on the parameterized ice-shelf melt. Eddy heat and potential vorticity fluxes are diagnosed and presented for each of the simulations and compared with control simulations where the ice-shelf cavity is not modified. Results show high ice shelf melt during the first year with maximum values in excess of 60 meters near the grounding line, but settle to tens of meters during the following years.