Sediment Transport and Vegetative Controls on Delta Channel Networks
Sediment Transport and Vegetative Controls on Delta Channel Networks
Abstract:
As they are governed by complex interactions between coastal, wetland, and fluvial processes, many of the controls on delta evolution are not well understood. The interactions between sediment transport processes and vegetative controls which shape the flow of water on a delta is one such poorly understood process. On deltas dominated by sediment transport, flow is characterized by rapid lateral migration and frequent switching of active channels and resembles a braided stream system. On the other hand, vegetation can reduce channel migration rates and strengthen existing channel banks, resulting in well-developed, localized flow patterns like dendritic or distributary channel networks. Previous work has shown through modeling (i.e. Murray and Paola 1994, 1997) and flume experiments (i.e. Gran and Paola 2001) that interactions between vegetation and sediment which allow or prohibit lateral transport of sediment is fundamental in explaining the morphology of fluvial systems, but many delta modeling efforts assume conditions like those of a vegetated delta. In fact, deltas introduce additional variables like sea level rise, subsidence, the creation of new land, and variable deposition rates, all of which will influence vegetation growth and sediment transport. Here we present a new numerical model designed to generate basic understanding of the processes controlling delta channel formation by examining the factors influencing whether sediment transport or vegetative controls dominate. Model development is informed by laboratory flume experiment at U T Austin. A novel synthesis building on past approaches to modeling braided-stream systems (the Murray and Paola model) and vegetated deltas (DeltaRCM; Liang et al 2015), the new model explores the effects of sea level rise, subsidence, sediment and water discharge, vegetation growth, and sediment properties (including here effects of vegetation) on delta channel morphology.