Picocyanobacteria Dominance in Deep Biomass Layers: Relation to Diatom Presence and Episodic Events.
Picocyanobacteria Dominance in Deep Biomass Layers: Relation to Diatom Presence and Episodic Events.
Abstract:
In Offshore Marine and Large Lake Waters, most of the biomass and the productivity of phytoplankton occur below surface observation capabilities. Sub-mixed layer phytoplankton populations develop, increase, persist, and decay in relation to physical structure such as pycnocline density gradients interacting with progressively changing light fields. Basin-scale meteorological events and persistence of major invasive species have also left marks on biogeochemical cycling and ecosystem function in Lake Michigan. Among the former are precipitation and turbulence alterations brought on by unusual winter ice cover and a century-scale flood during 2008. Dampened seasonal silicate cycling indicated a basin-wide reduction of diatom production following mussel establishment. Communities in Lake Michigan shifted from diatom and big cell-dominated to small cell picocyanobacteria-dominated phytoplankton. Picocyanobacteria were beneficiaries of profound oligotrophication of the ecosystem starting in 2003. Photosynthetic parameters of pre-2003 Deep Biomass populations dominated by diatoms were systematically different from the cyanobacterial epoch following quagga mussel establishment and increase in depth of 1% incident light to 50-60m. Deep cyanobacterial production has now often been on the same scale as overlying waters. Photophysiology changes in a smooth depth gradient in this clear water as opposed to previous abrupt transition to shade adaptation. Among these many physicochemical permutations, community structure has consistently been a tradeoff between diatoms and picocyanobacteria. Opposing fluctuations of biomass favor one or the other on seasonal time frames of sequential years, with a complete system reset between each (winter mixing). For the Great Flood example, diatom surface blooms increased light extinction and drove the deep biomass maximum up – as populations settled into the pycnocline they had already outcompeted the picocyanobacteria. The opposite was true of the extremely slow spring of 2015, which resulted in return of picocyanobacteria in cooler deep water. Picoplankton competition has become a regular component of modern Lake Michigan, with large energetic consequences for a grazing ecology.