Fish Behavior, Presence, and Distribution in a Tidally Dynamic Region, with and without a Tidal Energy Device

Gayle Barbin Zydlewski, Garrett Staines, Haley Viehman and Haixue Shen, University of Maine, School of Marine Sciences, Orono, ME, United States
Abstract:
Fish responses, presence, and use of tidally dynamic regions are not well documented. Baseline and effect data were collected to examine responses of fish to the introduction of a tidal power device. In 2012 Ocean Renewable Power Company’s TidGen® was deployed for one year and in 2014 their OCGen® was deployed for 2.5 months. We used this opportunity to determine (1) the vertical distribution of fishes before and after device deployment; (2) how fish behaved when approaching a device; and (3) the probability of fish encountering a device. From 2010 to 2013, 21 twenty-four-hour down-looking hydroacoustic surveys were performed at a project and control site. Prior to deployment (2010-2012) fish were generally distributed near the sea floor and more evenly distributed in the water column at night than during the day and there were significant differences between two of three before/after comparisons of vertical fish distributions, indicating an effect of the device. DIDSON acoustic cameras were used to document behavioral responses to a device. Most fish observed were <10 cm and moved in the same direction as the current. Approximately 50% of individuals and 67% of schools did not interact with the turbine. Less than 1% of individuals and 15% of schools showed avoidance behavior, and 35% of individuals and 14% of schools entered or exited the turbine. Turbine rotation reduced the probability of turbine entry by 35% and increased the probability of avoiding and passing by 120% and 97%, respectively. In 2014 we combined down-looking hydroacoustics with mobile transects to determine that the probability of fish being at the depth of the moving foils (~6-9 m) ranged from 0.083 to 0.093. These data indicate how fish respond to this novel object and are important for understanding fish use of such a dynamic ecosystem.