The effects of light, primary production, and temperature on bacterial production at Station ALOHA

Donn A Viviani, University of Hawaii at Manoa, Oceanography, Honolulu, HI, United States and Matthew J Church, University of Hawaii at Manoa, Honolulu, HI, United States
Abstract:
In the open oceans, bacterial metabolism is responsible for a large fraction of the movement of reduced carbon through these ecosystems. While broad meta-analyses suggest that factors such as temperature or primary production control rates of bacterial production over large geographic scales, to date little is known about how these factors influence variability in bacterial production in the open sea. Here we present two years of measurements of 3H-leucine incorporation, a proxy for bacterial production, at the open ocean field site of the Hawaii Ocean Time-series, Station ALOHA (22° 45’N, 158° 00’W). By examining 3H-leucine incorporation over monthly, daily, and hourly scales, this work provides insight into processes controlling bacterial growth in this persistently oligotrophic habitat. Rates of 3H-leucine incorporation were consistently ~60% greater when measured in the light than in the dark, highlighting the importance of sunlight in fueling bacterial metabolism in this ecosystem. Over diel time scales, rates of 3H-leucine incorporation were quasi-sinusoidal, with rates in the light higher near midday, while rates in the dark were greatest after sunset. Depth-integrated (0 -125 m) rates of 3H-leucine incorporation in both light and dark were more variable (~5- and ~4-fold, respectively) than coincident measurements of primary production (~2-fold). On average, rates of bacterial production averaged 2 and 4% of primary production (in the dark and light, respectively). At near-monthly time scales, rates of 3H-leucine incorporation in both light and dark were significantly related to temperature. Our results suggest that in the subtropical oligotrophic Pacific, bacterial production appears decoupled from primary production as a result of seasonal-scale variations in temperature and light.