Development of a Short-term Suction-cup Tagging Method for Small Delphinids to Understand the Effects of Climate, Ecosystem, and Anthropogenic Change
Development of a Short-term Suction-cup Tagging Method for Small Delphinids to Understand the Effects of Climate, Ecosystem, and Anthropogenic Change
Abstract:
Documented changes in regional abundance and distribution of marine mammals may be driven by climate, ecosystem, and human-induced variations, operating synergistically or individually on different time scales. However, long-term but fine-scale data on animal ranging and foraging patterns are needed to fully understand the mechanism and magnitude of such changes and if/how top predators such as marine mammals are adapting. This is particularly important for dolphins, for which non-invasive, longer duration tags are needed to track their daily and weekly movement patterns in concert with changes in prey. As part of an ongoing study on dusky dolphins (Lagenorhynchus obscurus) in Kaikoura, New Zealand, we are developing a short-term, non-invasive suction-cup tagging method for collecting high resolution data on dolphin foraging and ranging behavior. This is an advancement in the field of animal telemetry as few published studies have tested non-invasive suction-cup tagging methods on small (< 2 m) delphinids, and even fewer report successful deployments. During austral summer 2013-14 and austral winter 2014, we spent 149 h over 31 d searching for and observing dusky dolphins. Of 71 tagging attempts made, 49% (n = 35) were “sticks” (i.e., the tag adhered to the dolphin). The longest tag attachment time was 357 min. Dive depths tended to increase throughout the day, reaching maximum daytime dive depths of c.a. 25 m. This is consistent with dolphin behavior off Kaikoura, as individuals feed mainly at night on mesopelagic organisms. Most (92%, n = 46) dolphins exhibited low-level responses to tagging, indicating this to be an appropriate species on which to continue tagging efforts. Successful trials will facilitate application of the system to other small delphinids. Tagging data collected can be integrated with climate and oceanographic data derived from satellite sensors and other monitoring programs to produce a comprehensive picture of dolphin behavioral ecology.