Paleoecological Evidence for Late Holocene Range Shifting of Acropora palmata and Orbicella annularis on the Nearshore Southeast Florida Reef Tract

Alexander Modys, Claudio L. Zuccarelli and Anton E Oleinik, Florida Atlantic University, Department of Geosciences, Boca Raton, FL, United States
Abstract:
Climate fluctuations on the southeast Florida reef tract have been linked to long-term geographic distribution shifts in framework-building coral species Acropora palmata and Orbicella annularis. Previous data suggest that the boundary for active reef accretion driven by these corals contracted southward to its current position at Biscayne Bay throughout the early to middle Holocene (~8500-5500 cal BP). However, recent observations have shown that while A. palmata and O. annularis are still functionally absent north of this boundary, they are well represented within late Holocene sub-fossil death assemblages found at 3-4 m depths on the nearshore ridge complex (NRC). To assess this disparity, we performed a systematic comparison of taxonomic composition and diversity of living and dead coral assemblages at two locations on the northern NRC. We also determined an estimated age range for the death assemblages from 2 samples of A. palmata and 1 sample of O. annularis using high-resolution AMS radiocarbon dating. Our results show a clear transition from a late Holocene reef assemblage dominated by A. palmata and O. annularis to a modern reef assemblage dominated by less sensitive Porites astreoides. Sub-fossil A. palmata samples dated to 2950-3140 cal BP and 1820-1960 cal BP (2σ), and the sub-fossil O. annularis sample dated to 2290-2420 cal BP (2σ), indicating a total growth period of at least 1000 years. Our findings provide new evidence for a distinct late Holocene range shift in A. palmata and O. annularis on the northern shallow-water ridge complex of the southeast Florida reef tract system.