Coastal Marsh Longevity, Ecological Succession, and Organic Carbon Dynamics During Early Holocene Sea-Level Rise
Lael Vetter1, Kathryn M Schreiner2, Brad E Rosenheim3 and Torbjorn E Tornqvist1, (1)Tulane University of Louisiana, Department of Earth and Environmental Sciences, New Orleans, LA, United States, (2)University of Minnesota Duluth, Large Lakes Observatory, Duluth, MN, United States, (3)University of South Florida St. Petersburg, College of Marine Science, St Petersburg, FL, United States
Abstract:
Coastal marsh environments perform essential ecosystem services, including nutrient filtering, soil organic matter storage, and storm surge abatement, yet much is still unknown about their formation and fate under periods of sea-level change. During the early Holocene (7-10 ka), rapid sea-level rise in coastal Louisiana was one of the primary controls over marsh development and longevity. Here, we investigate plant community composition and succession and soil organic matter storage in early Holocene coastal marshes in Louisiana using bulk elemental ratios, lignin phenol biomarkers and stable isotopes from peat layers. Sediment cores were collected in southeastern Louisiana and contain a record of an early Holocene transgressive sea-level sequence 16-25 m below present sea-level. The sedimentary record consists of an immature paleosol overlain by basal peat that accumulated in an estuarine marsh, overlain by marine lagoonal muds. A re-established marsh peat is present 1-4 m above the initial transition to marine conditions, indicating a sequence of marsh development, sea-level rise and onset of marine conditions, and then further marsh development as the rate of relative sea-level rise decelerated.
Plant community composition in coastal marshes was determined through cupric oxide oxidation and lignin-phenol and non-lignin-phenol biomarker abundances. The degradation state of soil organic matter and the specific source of stabilized organic matter within the sedimentary peats were determined through lignin-phenol biomarker ratios. Organic matter sources ranged from terrestrial to marine over the course of sea-level rise, and different sites showed different amounts of marine organic matter influence and different levels of terrestrial organic matter degradation. These results have important implications for reconstructing the response of coastal marshes and their plant communities to accelerated rates of sea-level rise projected through 2100.