Hydrogen Limitation, Competition and Syntrophy Among Thermophiles in the Hot Subseafloor

ABSTRACT WITHDRAWN

Abstract:
To understand the biogeochemical impact of subseafloor life on surrounding environments and the overlying ocean, the rates of and constraints on growth and metabolite production must be determined for subseafloor microbes. The diversity of thermophiles and hyperthermophiles in the hot subseafloor is low, making them amenable to biogeochemical modeling. At hydrothermal vents, Methanothermococcus and Methanocaldococcus are common thermophilic and hyperthermophilic methanogens; Desulfurobacterium, common thermophilic autotrophic sulfur reducers; and Thermococcus, common hyperthermophilic H2-producing heterotrophs. Diffuse hydrothermal fluids (7-40°C) from Axial Seamount were incubated anaerobically at 55°C and 80°C. Microcosms with 1.2 mM added H2 produced 30-50 times more CH4 than those with 20 µM H2, demonstrating that H2 and heat were the primary constraints on the growth of thermophilic and hyperthermophilic methanogens. For Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii, the lower H2 thresholds and half-saturation constants (Ks) for growth in a chemostat were 9-20 µM and 47-69 µM, respectively, near their optimum growth temperatures. The lower H2 threshold and Ks for Desulfurobacterium sp. strain HR11 grown in a batch reactor at 72°C were <3 µM and 29 µM, respectively. Its catalytic efficiency (µmax/Ks) for H2 use was 4 times higher than those of M. thermolithotrophicus and M. jannaschii, but its Ks for thiosulfate was 19 µM, suggesting that it will only outcompete methanogens when sulfur is not growth limiting. Microcosm incubations at 55°C and 80°C supplemented with peptides in lieu of H2 produced the same amount of CH4 as microcosms with 1.2 mM H2. Co-culture incubations showed that H2 production by T. paralvinellae supported the growth of Methanothermococcus sp. strain BW11, Methanocaldococcus bathoardescens, and strain HR11 in H2-free medium, suggesting that syntrophy is a possible alternative H2 source in the subseafloor.