Microbial Composition and Adaptations in Oligotrophic Inland Seas
Microbial Composition and Adaptations in Oligotrophic Inland Seas
Abstract:
The Laurentian Great Lakes comprise an interconnected freshwater system with certain areas resembling the oligotrophic open ocean in terms of productivity and nutrient availability. This resemblance creates an opportunity for comparing marine and Great Lake microorganisms to identify signatures of adaptation to low nutrient environments and re-evaluate differences between marine and freshwater microorganisms. We present results from the first comprehensive microbial characterization of all five Great Lakes. We compared community structure, genetic functional potential, and genome properties across the Great Lakes and other aquatic systems. Taxonomic and functional comparisons across lakes yielded three consistent groups: trophically distinct Lake Erie, Lakes Michigan and Huron, and Lakes Superior and Ontario. Lake metagenomic signatures were repeatedly differentiated by the presence of phage sequences and phage-related functional genes. We observed sequence similarity and synteny between contigs assembled from Great Lake metagenomes and genomes of marine organisms, including Nitrosopumilus sp. NF5, Synechococcus sp. RCC307 and Synechococcus phage S-SKS1. Assembly of metagenomic sequences additionally yielded large contigs from poorly characterized taxa. These results begin to fill the gap in our understanding of how nutrients, salinity, and other environmental factors shape microbial structure and function.