Nitrification Processes, Conversion Kinetics, Physical Substrate Preferences and Source Function Analysis for an Aquatic Nitrification Model System

Julia Zimmer, Brendan O'Connor, Katherine Halmo and Ame Xiong, University of Wisconsin Milwaukee, Milwaukee, WI, United States
Abstract:
Nitrification is one of the processes that prevents accumulation of ammonium in aerobic near-bottom water of almost any basin-type ecosystem. Ammonium arises in part from digestive excretion as well as decomposition and diagenesis of organic matter. Ammonium inputs are especially pronounced near abundant benthic invertebrate communities (e.g., mussel or oyster beds) and where fish congregate en masse. Recent basin-scale changes in ecology of Lake Michigan have resulted in several zones of high excretion that are not accompanied by ammonium accumulation. A roller-bottle simulation of the sediment-water interface, using sand as the solid phase, is used with natural enrichments of nitrifier communities to measure empirical values for key terms in a mathematical model to describe the N-cycle process components of our closed model system. The maximum velocity of transformation is directly proportional to solid phase material in a mature system, with half-saturation values for ammonium and nitrite transformation of 207.3 and 10.8 µM respectively. These are significantly higher than ambient concentrations of 2-5 and 0.2-1.0 µM respectively for dense invertebrate communities but in line with observed values for dense fish aggregations. Thus regulation of reduced nitrogenous compounds can be very effective in these communities when there is sufficient interaction of the solid substrate with the source water. Further analysis of rate parameters and controls in the model system, and assessment of different natural and artificial solid phases for biofilm establishment and nitrification parameters is underway.