The Floe Size Distribution in the Marginal Ice Zone of the Beaufort and Chukchi Seas
Abstract:
We find that the FSD (the number of floes in different size categories) obeys a power-law distribution with an exponent that varies systematically over the course of spring, summer, and fall. The exponent (or slope in log-log space) is relatively shallow in spring but becomes steeper in summer, reflecting the fact that floes break up, resulting in fewer large floes relative to the number of small floes. In late summer the slope becomes shallower again, since small floes melt more quickly than large floes.
The spatial resolution of MODIS limits our analysis to floes larger than about 1 km in diameter. To investigate smaller scales, we calculated the FSD in satellite images from radar (SAR, 50-meter resolution) and optical (MEDEA, 1-meter resolution) sensors that overlap in space and time with MODIS images, to see whether the power-law FSD in the MODIS images extends to smaller scales. We present the results of those calculations, as well as comparisons between the modeled and observed FSD.