Feeding Currents generated by Cassiopea jellyfish
Feeding Currents generated by Cassiopea jellyfish
Abstract:
Feeding currents generated by organisms dwelling in the benthic boundary layer can enhance nutrient fluxes in coastal habitats with low-speed ambient flows. Patchy aggregations of Cassiopea medusae, commonly referred to as the “upside-down” jellyfish, are seen in sheltered marine environments such as mangrove forests and coral reefs in shallow regions saturated with sunlight. They exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms directed toward the free surface. Pulsations of their bells drive flow toward and away from the body, assisting in suspension feeding and for exchange of inorganic and organic matter across the water column. The feeding currents generated by aggregations of these medusae and subsequent effects on mixing in the water column have not been examined. We experimentally investigated currents generated by groups of Cassiopea medusae in a low-speed recirculating water tunnel. Multiple medusae grouping arrangements were tested in the tunnel based on time-lapse videos of the organisms obtained overnight in laboratory aquaria. Fluorescent dye introduced underneath the substrate was used to investigate release of porewater via bell motion. Quantitative flow visualization studies of Cassiopea currents were conducted using 2D high-speed particle image velocimetry. Vertical mixing of medusa-induced jets were observed in the presence of minimal background flow. The implications of feeding currents generated by groups of Cassiopea medusae on mixing in the water column will be presented.